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E-mail address: cristina.calineata@upb.ro

Abstract of the PhD Thesis

Supervised by Prof. Dr. habil. Mihai POSTOLACHE

Bucharest, October 25, 2024



Key words and phrases: CAT(0) space; W -hyperbolic space; L2 operator; common

fixed point; ∆-convergence; strong convergence; Poincaré half-plane; selection function;
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Abstract

General objective. This study is motivated by the necessity of finding general classes

of operators suitable for fixed point problems in geodesic spaces, along with versatile

iteration procedures to make possible the numerical reckoning of solutions, once the

existence is postulated. This Thesis aims to provide a consistent approach of this problem

by means of two three-step iteration procedures, Sn iteration [35] and Thakur et al.

iteration [37], both adapted to geodesic context. The general direction of study is at

the boundary between nonlinear analysis & numerical algorithms, and the main results

are related to fixed point problems, with nontrivial applications based on numerical

modeling. The main conclusions resulting from the study of these iterative process are

related to several features:

� versatility. Different classes of generalized nonexpansive operators are used in this

Thesis: operators with property (E), L2 operators, metric projections, operators

with (P )-property. The iterative procedures utilized herein are adapted to curved

geometric spaces: CAT(0) spaces and W -hyperbolic spaces.

� instrumental value. One main concern regarding the iteration procedure subject

to analysis is related to the convergence of the sequence of iterations towards the

solution of the studied problem. Most of the time, the results obtained refer to

weak convergence. However, by introducing additional mild conditions for the

underlying metric setting or for the operator involved in the iterative process,

strong convergence results are also obtained.

� qualitative aspects (stability and data dependence). Iterative procedures are used

in applied sciences to provide numerical algorithms for determining solutions to all

sorts of nonlinear problems. The running of such algorithms is always subject to

perturbations induced by the limitations of computer representation. Therefore, we

have to constantly ensure that the approximations made during the running of the

algorithm do not dramatically affect the estimation of the solution. A qualitative
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analysis of an iterative process in general, and of the Sn process in particular, is

motivated by such practical reasons.

Methodology. The methods used to perform the analysis of the involved iteration

procedure are varied: the study of convergence relies on the uniqueness of the asymptotic

center. Stability is analyzed according to the pattern provided by Harder and Hiks [20],

and data dependence analysis uses the method initiated by Rus and Mureşan [34]. The

comparative analysis regarding the efficiency of the studied process in relation to other

procedures is performed using polynomiographic techniques, introduced by Kalantari

[23]. Suitable coordinates are used to find the proper expression of the iterative process

on the Poincaré half-plane. The algorithms used in numerical modeling for simulation

are run in Matlab.

General state of art. The fixed point theory revolves around the fixed point equation

x = Tx, associated to some self-mapping T : X → X acting on a nonempty set X

on a metric space; for the pioneer source, see Caccioppoli [6]. One might say that

there is actually an intense process going on, which encourages efforts to investigate

and generalize Caccioppoli’s results, through a continuous search for broader classes

of operators and suitable metric frameworks, which ensure necessary topological and

geometric properties for the existence of fixed points. To mention a few, we underline

the outstanding contributions of Chatterjea [12], Ćirić [13], Garcia-Falset et al. [18],

Gabeleh et al. [16, 17], Hardy and Rogers [21], Kannan [24], Reich [33], Suzuki [36].

Once the existence of fixed point is proven it is desirable to numerically compute

it. That is why the study of multi-step iterative procedures, generally associated with

generalized nonexpansive operators, was initiated within linear setting and developed

recently both from the point of view of convergence behavior and from the perspective of

stability and data independence. However, the transition to non-linear structures is not

trivial, precisely because of the construction method of the iteration schemes. A careful

look, however, highlights the fact that linearity is actually a too strong requirement, not

necessarily essential, which can be replaced by certain convexity properties. For some

pioneering results in this direction, please see the early works by Mann [29], Krasnosel’skii

[26], Ishikawa [22], or more recent articles by Noor [30], Sintunavarat and Pitea [35],

Thakur et al. [37]. Note that most of these remarkable results are initiated in normed

linear space.

The metric alone is often not sufficient for studying specific practical issues, which

allow to be modeled as fixed point problems. That is why the frameworks in which
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several original results were developed evolved towards enriched structures, such as the

CAT(0) spaces [1, 19] or the W -hyperbolic spaces [25]. Both structures were identified

as being proper settings for obtaining fixed point theoretical results as well, especially

since many concepts valid in Banach spaces have exact counterparts in these geometric

settings (see [14], [28]).

Thesis description: structure and content.

Chapter 1, Operators with property L2 in CAT(0) spaces ([7], [9]), deals with

the solution of the common fixed point problem for two mappings belonging to the class

of L2 operators, which was very recently introduced in [27]. The formal definition of

condition L2 requires the self-mapping T to satisfy the inequality

lim sup
n→∞

d(xn, Tx) ≤ lim sup
n→∞

d(xn, x),

for each almost fixed point sequence {xn} (shortly a.f.p.s, i.e., a sequence {xn} such

that {d(xn, Txn)} is convergent to zero).

The general framework used in this chapter is the CAT(0) setting, for which we were

able to provide an example, Example 1, relying on the set of closed and bounded intervals

of real numbers.

Example 1. Let M = {[a, b] ⊂ R | a < b} be a set of closed intervals in R. On M ×M ,

we introduce the metric d given by the formula

d([a, b], [c, d]) = 2 ln

√
(d− b)2 + (c− a)2 +

√
(d− a)2 + (c− b)2√

2(b− a)(d− c)
,

for all a, b, c, d ∈ R. Then, M is isometric with H2 (Poincaré half-plane), resulting that

(M,d) is a CAT(0) space.

As instrument for approximating the solution of the common fixed point problem

of a pair (F,G) of L2 operators, we introduce a new iterative scheme, inspired by [35],

properly adapted for the CAT(0) setting.

Algorithm 1. Let C be a nonempty and convex subset of a CAT(0) space (M,d). For

two mappings F : C → C and G : C → C and x0 ∈ C, the sequence {xn} is generated

in three steps by the rules:

yn = (1− an)xn ⊕ anFxn

zn = (1− bn)xn ⊕ bnGyn

xn+1 = (1− cn)Fzn ⊕ cnFyn, n ≥ 0,
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where {an}, {bn} and {cn} are real sequences bounded away from 0 and 1.

The goal in this chapter is to introduce suitable conditions such that the sequence

{xn}, generated by Algorithm 1 in relation to a pair (F,G) of L2 mappings, to be strong

convergent or ∆-convergent to a common fixed point x ∈ Fix(F,G) of the two operators.

In Lemma 1, we prove that a L2 operator satisfies Browder’s demiclosedness principle,

where, instead of weak convergence, we assume ∆-convergence.

Lemma 1. Let C be a subset of a complete CAT(0) space (M,d) and let F : C → M be

a L2 operator. If {xn} ⊂ C is an a.f.p.s. for F such that xn
∆→ x ∈ M , then Fx = x.

A set of lemmas are stated and proved next, providing some technical tools for the

the main outcomes of the chapter. Lemma 2, Lemma 3 and Lemma 4 provide conclusions

for an even more wider class of operators (quasi-nonexpansive mappings), and they refer

to the solution set, and to some properties of the intermediate sequences of the iteration

procedure.

Lemma 2. Let F : C → C and G : C → C, where C is a nonempty closed subset of a

CAT(0) space, be two quasi-nonexpansive operators. Then the set Fix(F,G) is closed.

Lemma 3. Let (M,d) be a CAT(0) space and C be a nonempty and convex subset of

M . Let F : C → C and G : C → C be two quasi-nonexpansive mappings such that

Fix(F,G) ̸= ∅. Then, for the sequences {xn}, {yn}, {zn}, generated by Algorithm 1 and

for any q ∈ Fix(F,G), the following limits

lim
n→∞

d(xn, q), lim
n→∞

d(yn, q), lim
n→∞

d(zn, q)

exist and are equal.

Lemma 4. Let (M,d) be a complete CAT(0) space and C be a nonempty and convex

subset of M . Consider F : C → C and G : C → C be two quasi-nonexpansive mappings

which have at least one common fixed point and let the sequences {xn}, {yn} and {zn} be

generated by Algorithm 1. Then,

(i) lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, zn) = lim
n→∞

d(zn, xn) = 0;

(ii) lim
n→∞

d(xn, Fxn) = lim
n→∞

d(yn, Gyn) = 0.

The structure of our iterative scheme makes it more difficult to establish whether

{xn} is an almost fixed point sequence for the mapping G, than for the mapping F .

We manage to avoid this obstacle by using the concept of equivalent sequences (two

sequences {xn} and {yn} which satisfy lim
n→∞

d (xn, yn) = 0). Lemma 5 proves that two

equivalent sequences have identical asymptotic centers and ∆-limits.
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Lemma 5. If {xn} and {yn} are two equivalent bounded sequences in a CAT(0) space

(M,d), then A({xn}) = A({yn}). Moreover, if xn
∆→ p ∈ M , then yn

∆→ p as well.

Finally, Theorem 1 gives sufficient conditions such that the sequence {xn} generated

by Algorithm 1 is ∆-convergent to a common fixed point of the two mappings F and

G which satisfy condition L2, provided that such points exist. An upgrade is settled in

Theorem 2, where strong convergence is analyzed.

Theorem 1. Let (M,d) be a complete CAT(0) space and C be a nonempty, closed and

convex subset of M . If F : C → C and G : C → C are two mappings satisfying the

condition L2 such that Fix(F,G) ̸= ∅, then the sequence {xn}, generated by Algorithm 1,

is ∆-convergent to an element of Fix(F,G).

Theorem 2. Let (M,d) be a complete CAT(0) space and C be a nonempty, closed,

convex subset of M and let F : C → C and G : C → C be two operators having the

property L2. Then, the iterative sequence {xn} converges to a point in Fix(F,G) if and

only if lim inf
n→∞

d(xn,Fix(F,G)) = 0.

Further on, this chapter also includes an example, meant to illustrate to results

described above. Let C be a point on the positive y-Axis of the Poincaré half-plane

H2 and D be the disk centered at C with some fixed radius r. Consider the mappings

G(x, y) = (−x, y) and FX =
1

2
C ⊕ 1

2
X, if X = (x, y) ∈ intD, FX = SC

(
1

2
C ⊕ 1

2
X

)
,

if X = (x, y) ∈ ∂D, where SC(Y ) denotes the symmetric of the point Y with respect

to the point C. Both mappings F and G are proved to be L2 operators. Moreover, the

sequence induced by Algorithm 1 converges strongly to the point C.

Chapter 2, A new approach to averaged mappings in CAT(0) spaces ([7],

preprint form [8]), considers new contractive and nonexpansivity conditions, inspired

by the so-called enrichment technique introduced by Berinde and Păcurar [3, 5], which

basically replaces the mapping T involved in some condition with its α-averaged version.

This idea, applied for the setting of CAT(0) spaces and nonexpansive operators leads to

Definition 1, involving the averaged mapping Tαx = (1− α)x⊕ αTx.

Definition 1. Let T : X → X be a given mapping in a CAT(0) space (X, d). If there

exists α ∈ (0, 1] such that

d(Tαx, Tαy) ≤ d(x, y),

for all x, y ∈ X, then T is called α-enriched nonexpansive mapping.

In the first part of the chapter, we develop the averaging technique for contractive

conditions by allowing the averaging parameter α to vary and even take values outside of
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the unit interval. In geometric terms, this corresponds to points which are on the whole

geodesic determined by the points x and Tx respectively. In order to do so, we assume

that (X, d) is a CAT(0) space which has, additionally, the geodesic extension property

and we denote by Sλ
[p,q] the set of all points r ∈ X such that there exists a geodesic line,

containing the segment [p, q], on which r = (1− λ)p⊕ λq. In the degenerate case, when

p = q, we shall take Sλ
[p,q] = {p}.

Based on the concept of selection function described in Definition 2, we define a more

general enriched contractive condition in Definition 3. The motivation for this is that

different pairs of points might require different averaging parameters in order to satisfy

a contraction-type condition. Although the change does not seem significant, actually it

is. For instance, Example 2 proves that our generalized contractions are not necessarily

continuous (as in the case of enriched contractions in the sense of Berinde [5]). Moreover,

some of them are not even quasi-nonexpansive mappings, as shown in Example 3.

Definition 2. Let (X, d) be a CAT(0) space. A function B : X ⇒ 2R, that assigns to

each p ∈ X a subset B(p) ⊆ R, with B(p)\{0} ≠ ∅, is called selection function.

Definition 3. Let γ ∈ [0, 1) and B : X ⇒ 2R be a selection function. A mapping

T : X → X is said to be a (γ,B)-generalized contraction if, for every pair (p, q) ∈ X×X,

and every β ∈ B(q), β ̸= 0, there exists α ∈ B(p), α ̸= 0 such that

d(u, v) ≤ γd(p, q),

where u ∈ Sα
[p,Tp], v ∈ Sβ

[q,T q].

It must be noted that, if B(p) = {α}, ∀p ∈ X, for a given α ∈ (0, 1], then we obtain

the contractive version of Definition 1 and for α = 1, one gets classical contractions.

Example 2. Let X = R be endowed with the Euclidean metric. Consider the mapping

T : X → X, Tx =

 2x, x ∈ Q,
x

2
, x ∈ R\Q,

and the selection function

B : X ⇒ 2R, B(x) =

{
{−1}, if x ∈ Q,

{2}, if x ∈ R\Q.

Then, T is a (γ,B)-generalized contraction, for any γ ∈ [0, 1).
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Example 3. Let X be the real plane R2, and p = (x1, y1), q = (x2, y2) two points. We

endow X with the so-called jungle river metric

d(p, q) =

{
|y1 − y2|, x1 = x2

|y1|+ |x1 − x2|+ |y2|, x1 ̸= x2.

This is a well-known example of a R-tree, and therefore a CAT(0) space, which addi-

tionally has the geodesic extension property.

Let now consider the mapping

T : R2 → R2, T (x, y) =


(x, y + 1), y > 0

(−x, y), y = 0

(x, y − 1), y < 0.

Clearly, the only fixed point of the mapping T is the origin O(0, 0). Also, it can be

checked that T is not quasi-nonexpansive and therefore does not belong to many well-

known classes of operators. Moreover, since T is not continuous, it is neither an enriched

contraction in the sense of Berinde [3]. However, T is a (γ,B)-generalized contraction

in the sense of Definition 3, for the selection function

B : X ⇒ 2R, B(x, y) =

 {−(|x|+ |y|)}, if y ̸= 0,{
1

2

}
, if y = 0.

Regarding the numerical computation of fixed points, it is a common practice to

construct those as limits of some iterates. In the setting of a CAT(0) space which has

the geodesic extension property we use the Mann-type iteration process{
x0 ∈ X

xn+1 ∈ Sαn

[xn,Txn]
, αn ∈ Bδ,

(1)

where Bδ is a bounded subset in R\(−δ, δ), with δ > 0 and T is a (γ,B)-generalized con-

traction. The main outcomes are included in Theorem 3 and they refer to the existence

of fixed points and their numerical approach.

Theorem 3. Let (X, d) be a complete CAT(0) space which has the geodesic extension

property and let Bδ be a bounded subset in R\(−δ, δ), for some δ > 0. Consider a

selection function B : X ⇒ 2Bδ (hence B(x) ⊂ Bδ, for all x ∈ X). If T : X → X is a

(γ,B)-generalized contraction, then T has a unique fixed point. Moreover, the iteration

(1) converges to the unique fixed point of T , for a proper selection of step-sizes {αn}.
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The second part of this chapter is dedicated to a class of generalized nonexpansive

mappings, as in Definition 4, whose description relies essentially on a given selection

function.

Definition 4. Let (X, d) be a CAT(0) space and B : X ⇒ 2(0,1] a selection function. A

mapping T : X → X is calledB-generalized nonexpansive if, for every pair (p, q) ∈ X×X,

and every β ∈ B(q), there exists α ∈ B(p), such that

d(Tαp, Tβq) ≤ d(p, q).

Once more, we notice that, if B(p) = {α}, ∀p ∈ X, for given α ∈ (0, 1], we get the

enriched nonexpansive mappings in the sense of Berinde whereas for α = 1, we recover

the nonexpansive mappings. Moreover, if B is a selection function such that 1 ∈ B(p),

for all p ∈ X, then we recover the class of quasi-nonexpansive mappings.

The generality of the new operators is proved through Example 4, which provides a

generalized nonexpansive mapping which fails to be quasi-nonexpansive.

Example 4. LetX = [0, 1]×[0, 1] together with the jungle river metric from the previous

section and consider a mapping defined by

T : X → X, T (x, y) =

(
x+ 1

2
, 1− x

)
.

Then, T is a generalized nonexpansive mapping with respect to the selection function

B : X ⇒ 2(0,1], B((x, y)) =



 y

y +
3

2
(1− x)

 , if (x, y) ̸= (1, 0),

(0, 1], if (x, y) = (1, 0),

where {·} denotes a singleton. On the other hand, T is not quasi-nonexpansive.

The main outcomes of this chapter refer to the existence of fixed points for generalized

nonexpansive mappings, as well as to convergence results toward the solution, for a Mann

type iteration scheme defined as follows:

xn+1 = Tαnxn = (1− αn)xn ⊕ αnTxn, αn ∈ (0, 1), (2)

for a given x0 ∈ C.

Theorem 4 establishes the existence of fixed points for a particular case of generalized

nonexpansive mappings. More precisely, it considers a selection function B : X → (0, 1],
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that is for each x ∈ X, B(x) is a set consisting of a single element.

Theorem 4. Let (X, d) be a complete CAT(0) space, C a bounded, closed and convex

subset of X and B : X → (0, 1] a given selection function. Then, any B-generalized

nonexpansive mapping T : C → C has a fixed point in C.

Lemma 6 gives some necessary conditions under the assumption regarding the exis-

tence of fixed points, while Theorems 5 and 6 provide sufficient conditions for conver-

gence.

Lemma 6. Let (X, d) be a complete CAT(0) space, and C a bounded, closed and convex

subset of X. Suppose that T : C → C is a B-generalized nonexpansive mapping, where

B : X ⇒ 2[δ,1] is a given selection function. If x is a fixed point of T , then:

i) there exists a sequence {αn} ⊂ (0, 1) such that the limit ℓ := lim
n→∞

d(xn, x), where

{xn} is generated by (2), exists;

ii) moreover, lim
n→∞

d(xn, Txn) = 0.

Theorem 5. Let (X, d) be a complete CAT(0) space and let C be a bounded, closed and

convex subset of X. If T : C → C is a B-generalized nonexpansive mapping for a given

selection function B : X ⇒ 2[δ,1] with F (T ) ̸= ∅, then, for any x0 ∈ C, there exists a

sequence {αn} ⊂ (0, 1) such that the sequence {xn} generated by (2) ∆-converges to a

fixed point of mapping T .

Theorem 6. Let (X, d) be a complete CAT(0) space and let C be a bounded, closed and

convex subset of X. If T : C → C is a B-generalized nonexpansive mapping for a given

selection function B : X ⇒ 2[δ,1] with F (T ) ̸= ∅, which is also demicompact, then, for

any x0 ∈ C, there exists a sequence {αn} ⊂ (0, 1) such that the iterative sequence {xn}
generated by (2) converges to a fixed point of T .

The last part of the chapter develops a calculation procedure for the points of a

geodesic segment, in relation to the jungle river metric. The resulted formulas allowed

us to produce algorithms for the construction of orbits specific to the Mann iteration.

In Chapter 3, Fixed proximal pairs of Er-mappings ([7], [11]), the focus is

pointed to the study of fixed proximal pairs of Er-mappings in the setting of the CAT(0)

spaces. A proximal fixed pair is any solution of the Problem 1, which was first formulated

by Eldred et al. in [15] for relatively nonexpansive mappings in strictly convex Banach

spaces and Hilbert spaces.
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Problem 1. Let (X, Y ) be a pair of two nonempty subsets of a metric space (M,d).

Given a noncyclic mapping, i.e., T : X∪Y → X∪Y , such that T (X) ⊆ X and T (Y ) ⊆ Y ,

find x ∈ X and y ∈ Y such that Tx = x, Ty = y and d(x, y) = dist(X, Y ), where

dist(X, Y ) = inf{d(x, y) : x ∈ X, y ∈ Y }.

The goal of this chapter is to extend the study of Problem 1 to the setting of CAT(0)

spaces, involving a more general class of mappings as in Definition 5, which we shall call

noncyclic Er-mappings (shortly, Er-mappings), based on a condition similar to condition

(E) of Garcia-Falset et al. [18]

Definition 5. Let (X, Y ) be a pair of nonempty subsets of a metric space (M,d) and let

(X0, Y0) denote the corresponding proximal pair. A noncyclic mapping T : X∪Y → X∪Y
satisfies the noncyclic relative condition (E) (shortly (Er)-condition) if T (X0) ⊂ X0,

T (Y0) ⊂ Y0, and there exists µ ≥ 1 such that

d(x, Ty) ≤ µd(x, Tx) + d(x, y) and d(y, Tx) ≤ µd(y, Ty) + d(x, y),

for all (x, y) ∈ X × Y .

A classification result is stated in Proposition 1, emphasizing the relation with quasi-

noncyclic relatively nonexpansive mappings.

Proposition 1. Every mapping satisfying Er-condition which has a best proximity pair

is a quasi-noncyclic relatively nonexpansive mapping.

The main idea of this part is to study the convergence of the iterates generated

by a Thakur-type iteration scheme [37] to the fixed proximal pairs of the new class of

mappings. The iteration procedure, described in Algorithm 2, is properly adapted for

the CAT(0) setting.

Algorithm 2. Let x1 ∈ X0 (or Y0) and take {an}, {bn} two sequences in [a, b] such that

0 < a ≤ b < 1 and define the iterative step as

zn = (1− bn)xn ⊕ bnTxn

yn = T ((1− an)xn ⊕ anzn)

xn+1 = Tyn,

for all n ≥ 1.

In the beginning, in Theorem 7, we establish the (P )-property for each pair of

nonempty, closed and convex subsets in a CAT(0) space. The reasoning is based on some
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very specific properties of the metric projection relative to the proximal pair (X0, Y0).

These properties are detailed in Lemma 7, Lemma 8, Lemma 9, Lemma 10.

Lemma 7. Let (X, Y ) be a pair of closed, convex sets in a complete CAT(0) space

(M,d). If x ∈ X0 and y, z ∈ Y0 are three points such that d(x, y) ≤ d(x, z), then

d(x, PX(y)) ≤ d(x, PX(z)).

Lemma 8. Let (X, Y ) be a pair of closed, convex sets in a complete CAT(0) space (M,d)

and let x, y ∈ X0. Then d(x, PY (y)) = d(y, PY (x)).

Lemma 9. Let (M,d) be a CAT(0) space and let X, Y be two nonempty, closed, convex

subsets of M . Suppose additionally that Y is bounded. Then the subsets X0 and Y0 are

nonempty, closed, convex and bounded.

Lemma 10. Let (X, Y ) be a pair of nonempty, closed and convex subsets of a CAT(0)

space (M,d) such that at least one of the sets X or Y is bounded. If

P : X ∪ Y → X ∪ Y, P (x) =

{
PX(x), x ∈ Y

PY (x), x ∈ X,

then:

i) d(x, P (x)) = dist(X, Y ), for any x ∈ X0 ∪ Y0;

ii) P (X0) ⊆ Y0 and P (Y0) ⊆ X0;

iii) P is an isometry, that is, d(P (x), P (x)) = d(x, x) and d(P (y), P (y)) = d(y, y),

for all x, x ∈ X0 and y, y ∈ Y0.

Theorem 7. Any pair (X, Y ) of nonempty, closed and convex subsets in a CAT(0) space

(M,d) has (P )-property.

Another important property of the pair (X, Y ), stated in Proposition 2, concerns the

proximal Opial condition and provides the arguments for proving the demiclosedness-

type result for Er-mappings in Theorem 8.

Proposition 2. Let (M,d) be a CAT(0) space and (X, Y ) be a nonempty, closed, convex

and proximal pair of M . Then, (X, Y ) satisfies the proximal Opial condition.

Theorem 8. Let X and Y be two nonempty, bounded, closed and convex subsets of

CAT(0) space (M,d). Assume that T : X ∪ Y → X ∪ Y is a mapping which satisfies

the nonyclic Er-condition and that the sequence {xn} ∆-converges to x ∈ X such that

lim
n→∞

d(xn, Txn) = 0. Then, (x, P (x)) ∈ ProxX×Y (T ).
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Finally, important properties of the iterates generated by the Thakur-type iteration

scheme are described in Lemma 11 and Lemma 12, such that to finally acquire the

main outcomes which prove the ∆-convergence and strong convergence: Theorem 9 and

Theorem 10.

Lemma 11. Let X and Y be two nonempty subsets of a CAT(0) space (M,d) and

let T : X ∪ Y → X ∪ Y be a mapping which satisfies the noncyclic Er-condition. For

arbitrary chosen x1 ∈ X0 consider the sequence {xn}, generated by Algorithm 2. Then,

for all p ∈ F (T ) ∩ Y0 the limit lim
n→∞

d(xn, p) exists. Furthermore, the sequence {xn} is

bounded.

Lemma 12. Let (M,d) be a CAT(0) space and X, Y two nonempty subsets of M and

let T : X ∪ Y → X ∪ Y be a mapping which satisfies the noncyclic Er-condition. Let

{xn}, {yn} and {zn} be sequences generated by Algorithm 2. Then, lim
n→∞

d(xn, zn) = 0

and lim
n→∞

d(xn, Txn) = 0.

Theorem 9. Let (M,d) be a CAT(0) space and X, Y be two nonempty, bounded, closed

and convex subsets of M . Suppose T : X ∪ Y → X ∪ Y is a mapping which satisfies

the noncyclic Er-condition and {xn} is a sequences generated by Algorithm 2. Then, the

sequence {(xn, P (xn))} ∆-converges to a fixed proximal pair of mapping T .

Theorem 10. Let (X, Y ) be a nonempty, closed and convex pair of subsets in a CAT(0)

space (M,d) such that at least one of the subsets is compact and let T : X ∪ Y → X ∪ Y

be a Er-mapping. Let {xn} be a sequence generated by Algorithm 2. Then, the sequence

{(xn, P (xn))} converges strongly to a fixed proximal pair of mapping T .

Not least, several examples are meant to emphasize the practical value of the formal

analysis revealed previously. Example 5 reveals a mapping which does not satisfy the

condition (E), but satisfies Er-condition. Example 6 underlines a mapping which satisfies

Er-condition, but is not noncyclic relatively nonexpansive.

Example 5. Consider the subsets in the Euclidean plane

X = {a = (0, 1), b = (2, 1), c = (4, 1)}, Y = {a′ = (1, 0), b′ = (3, 0), c′ = (5, 1)}

and the noncyclic mapping T : X ∪ Y → X ∪ Y , given by the rule

T (a) = b, T (b) = a, T (c) = c, T (a′) = a′, T (b′) = c′, T (c′) = b′.

This operator is not quasi-nonexpansive and hence does not satisfy the condition (E).

On the other hand, it satisfies the noncyclic Er-condition.
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Example 6. Let X = [0, 1] × {1} and Y = [0, 1] × {0} be two subsets of R2 endowed

with the usual Euclidean metric and let T : X ∪ Y → X ∪ Y be a mapping given by

T (x, 1) =

(
x+ 1

2
, 1

)
and T (y, 0) =

(
y + 2

3
, 0

)
.

Then, T satisfies the noncyclic Er-condition.

Chapter 4, Operators with condition (E) in W -hyperbolic spaces ([7], [10]),

extends the underlying setting to more general hyperbolic frameworks. In [25], Kohlen-

bach used an additional convex structure to define a special class of metric spaces. It is

precisely this key element that allows the study of iterative procedures to be extended

beyond linear spaces. A new example, regarding closed and bounded real intervals is

provided in Example 7, proving that this structure goes beyond the already known geo-

metric models.

Example 7. Let X = {[a, b] : |a| < b}, be endowed with the metric d, given by the rule

d([a, b], [c, d]) = |(a+ b)− (c+ d)|+ |(b2 − a2)− (d2 − c2)|,

for all a, b, c, d ∈ R. Consider the mapping W : X2 × [0, 1] → X, by formula

W ([a, b], [c, d], α) =
1

2

[
(1− α)(a+ b) + α(c+ d)− (1− α)(b2 − a2) + α(d2 − c2)

(1− α)(a+ b) + α(c+ d)
,

(1− α)(a+ b) + α(c+ d) +
(1− α)(b2 − a2) + α(d2 − c2)

(1− α)(a+ b) + α(c+ d)

]
where α ∈ [0, 1]. Then, the triple (X, d,W ) is a hyperbolic space.

This chapter is carried out on a remarkable class of operators, that of mappings with

condition (E), defined by Garcia-Falset et al. [18] and properly adapted in Definition 6

for hyperbolic setting.

Definition 6. Let (X, d,W ) be a hyperbolic space. A mapping T : S → X satisfies

condition (Eµ), for a given µ ≥ 1, provided that

d(x, Ty) ≤ µd(x, Tx) + d(x, y),

for all x, y ∈ S, where S is a nonempty subset of the space X.

The classic iterations could be adapted to the hyperbolic setting, by using properly

the convex structure. Hence, we explore through this chapter the three-step iteration
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procedure Sn, introduced by the authors Sintunavarat and Pitea [35] in 2016 and ex-

tended to the setting of hyperbolic spaces as follows:

Algorithm 3. Let x1 ∈ S and let the sequence {xn} be generated through the following

iterative scheme: 
yn = W (xn, Txn, βn)

zn = W (xn, yn, γn)

xn+1 = W (Tzn, T yn, αn),

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences in (0, 1).

Lemma 13 and Lemma 14 provide some original preparatory results, describing se-

veral features of the iterative sequence.

Lemma 13. Let (X, d,W ) denote a hyperbolic space, S a nonempty convex subset of X

and T : S → S an operator satisfying F (T ) ̸= ∅ and d(Tx, p) ≤ d(x, p) for any x ∈ X,

and p ∈ F (T ). If p ∈ F (T ) and the sequence {xn} is generated by Algorithm 3, then

lim
n→∞

d(xn, p) exists.

Lemma 14. Let (X, d,W ) be a uniformly convex hyperbolic space with monotone mo-

dulus of uniform convexity, S a nonempty convex subset of X and T : S → S an op-

erator with condition (E) and with the property that F (T ) ̸= ∅. If the sequence {xn}
is generated by Algorithm 3 with {αn}, {βn} and {γn} bounded away from zero, then

lim
n→∞

d(xn, Txn) = 0.

Based on the properties above, the main results of this chapter provide a ∆-convergence

result in Theorem 11 and some strong convergence outcomes in Theorem 12, Theorem

13 and Theorem 14.

Theorem 11. Let (X, d,W ) be a complete uniformly convex hyperbolic space with mono-

tone modulus of convexity, S a closed nonempty convex subset of X and T : S → S an

operator with condition (E) and with the property that F (T ) ̸= ∅. Then, the sequence

{xn} generated by Algorithm 3, with {αn}, {βn} and {γn} bounded away from zero,

∆-converges to a point p ∈ F (T ).

Theorem 12. Let (X, d,W ) be a complete uniformly convex hyperbolic space with mono-

tone modulus of convexity, S a compact nonempty convex subset of X and T : S → S an

operator with condition (E) and with the property that F (T ) ̸= ∅. Then, the sequence

{xn} generated by Algorithm 3 with {αn}, {βn}, {γn} bounded away from zero, converges

strongly to a point p ∈ F (T ).
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Theorem 13. Let (X, d,W ) be a complete uniformly convex hyperbolic space with mono-

tone modulus of convexity, S a closed nonempty convex subset of X and T : S → S an

operator with condition (E) and with the property that F (T ) ̸= ∅. Then, the sequence

{xn} generated by Algorithm 3 converges strongly to a point p ∈ F (T ) if and only if

lim
n→∞

d(xn, F (T )) = 0.

Theorem 14. Let (X, d,W ) be a complete uniformly convex hyperbolic space with mono-

tone modulus of convexity, S a closed nonempty convex subset of X and T : S → S an

operator with condition (E) and with the property that F (T ) ̸= ∅. If, in addition, the

operator T also satisfies condition (A), then the sequence {xn} generated by Algorithm

3 converges strongly to a point of F (T ).

In Chapter 5, Qualitative study of Sn iteration in W -hyperbolic spaces ([7],

manuscript form [2]), the focus is on the qualitative study of the iterative procedure Sn

in the W -hyperbolic setting, in connection to hyperbolic contractive mappings. The idea

behind the concepts of stability and data independence comes from computer modeling

of iterative algorithms. It actually answers the question: what happens to the the

convergence pattern or to the real fixed point when working with a perturbed operator,

or when numerical errors occur?

The stability of an iteration procedure means that the numerical errors that may

occur during each iteration step do not interfere with the convergence behavior. This

property was introduced by Harder and Hicks [20]. Later, Berinde [4], Olatinwo and

Postolache [32] analyzed it in connection with various iteration procedures, especially

in uniformly convex metric spaces. The original result concerning this specific issue, in

connection to the Sn iteration procedure is included in Theorem 16, which is an outcome

closely related to Theorem 15.

Theorem 15. Let (X, d,W ) be a complete hyperbolic space, S a closed nonempty con-

vex subset of X and T : S → S a contraction mapping. Let {xn} be an iterative se-

quence generated by Algorithm 3, with {αn}, {βn} and {γn} in (0, 1), satisfying the

condition
∞∑
n=1

αnβnγn = ∞. Then, {xn} converges strongly to the unique fixed point of T .

Theorem 16. Let (X, d,W ) be a complete hyperbolic space, S a closed nonempty convex

subset of X and T : S → S a contractive mapping. Then, the iterative procedure Sn

described in Algorithm 3, for {αn}, {βn}, {γn} in (0, 1) with αnβnγn ≥ a > 0, ∀n ≥ 1,

is T -stable.

On the other hand, fundamental results related to data independence were introduced

over time by Rus and Mureşan [34], or Olatinwo [31]. It should be noted that the errors
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reach a minimum when the iteration depends only on the initial estimate and not on the

operator itself (which may be subject to perturbations). The original outcome of this

chapter concerning data independence is Theorem 17.

Theorem 17. Let (X, d,W ) be a complete hyperbolic space, S a closed nonempty convex

subset of X and T : S → S a contraction with fixed point p. Let T̃ be an approximate

mapping of the contraction mapping T with maximum admissible error ε. For a given

initial estimate x1 = x̃1, consider the iterative sequences {xn} and {x̃n} resulting through

the iterative scheme Sn in Algorithm 3 applied in connection with operators T and T̃ ,

respectively. Assume also that the real number sequences {αn}, {βn} and {γn} in (0, 1)

satisfy sn = αnβn + βnγn − αnβnγn ≥ 1

λ− θ
, for some λ > θ. If lim

n→∞
x̃n = p̃, then

d(p, p̃) ≤ λε

1− θ
.

Additionally, an interesting example of contraction is provided in Example 8, together

with an intuitive approach to the concept of approximate mapping.

Example 8. Let (X, d,W ) be a complete W -hyperbolic space. If p0 ∈ X and θ ∈ [0, 1),

then

T : X → X, Tx = W (p0, x, θ)

is a contractive mapping with contraction constant θ and with unique fixed point p0.

Moreover, if ε > 0 and p̃0 ∈ B̄

(
p0,

ε

1− θ

)
, then T̃ : X → X, T̃ x = W (p̃0, x, θ) is another

θ-contraction, with fixed point p̃0, which provides an approximate mapping of T , with

maximum admissible error ε. Let us also point out that, since d(p0, p̃0) ≤
ε

1− θ
, one has

d(p0, p̃0) → 0 as ε → 0. This means that, any iteration scheme for which x → f(T, x)

and x → f(T̃ , x) are convergent procedures toward the two fixed points, respectively, is

data independent.

The chapter is completed with a computing procedure for the convexity map on the

Poincaré disk model, which allows us further to perform numerical simulations and com-

parative analysis via polynomiography. We tested the resulted computational procedure

on the contractive operator Tx = W

(
p0 =

(
1

2
,−1

2

)
, x, θ =

1

2

)
and initial estimate

x1 =

(
3

5
,
3

5

)
and obtained the expected fixed point, via the Sn iteration procedure.

Finally, the chapter ends with a comparative analysis between the Sn procedure and

the Picard iteration, using a visual method, polynomiography. Although introduced and

used initially to determine the roots of complex polynomials (see [23]), polynomiography

could be successfully applied to study efficiency of iterative algorithms. In this case, by

applying the procedure for both hyperbolic Sn and Picard iterations, in connection with
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the contractive operator above, we reach to a clear conclusion: the Sn algorithm is more

efficient than the Picard algorithm.



References

1. W. Ballmann, M. Gromov, V. Schroeder, Manifolds of non-positive curvature,

Birkhauser: Boston, MA, USA (1985), Volume 61.
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