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Chapter 1. Current state of high-strength steel applications in
welded constructions

1.1 Introduction

High-strength steels have been employed in various industrial sectors since the 1950s, but their
characteristics have evolved significantly over time. In the 1960s, the maximum yield strength of weldable
high-strength steels was approximately 400-500 MPa, whereas modern high-strength steels (HSS) can
now achieve yield strengths exceeding 1300 MPa. In recent years, the demand for modern high-strength
steels has increased due to their significant advantages in terms of weight [1], these steels offer both high
strength and low weight, enabling the reduction of structural thicknesses and enhancing energy efficiency
in their applications. High-strength steels are used in a wide range of industrial fields and applications,
including the automotive industry, shipbuilding, hydroelectric and nuclear power plants, forestry and
agricultural applications, oil extraction platforms, pipelines, trucks, logging cranes, and other lifting
equipment. Examples of high-strength steels applications in the automotive industry are shown in Figure
1.1.

H
—

c) d)
Fig.1.1 Examples of high-strength steels applications in the automotive industry: a — automotive
platforms, b — lifting systems, ¢ — loading/transport systems, d - forestry transport equipment, 1,2,3 —
components made from high-strength steels. [2]

The predominant method for joining steel structures is welding, and welding high-strength steels
has been the focus of extensive research in recent years. Ensuring high-quality welded joints requires a
thorough understanding of the factors influencing the weldability of these steels, including their
manufacturing method and chemical composition. The relationship between welding parameters such as
heat input (defined by welding current, arc voltage, and welding speed), cooling time, and preheating
temperature is a classic issue in identifying optimal values. These parameters significantly influence the
welding process, and changing of one parameter can have substantial effects on both the quality of the
welded joint and the properties of the materials used.

Welding high-strength steels requires strict control of welding parameters, which are influenced
by the steel’s manufacturing process and chemical composition. Although research on welding these steels
are still ongoing, there is not yet sufficient data to provide on the choice of optimal welding parameters
for different types of high-strength steels and welding processes. This raises the question of how welding
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parameters for various steel types and processes can be standardized to predict the properties of the welded
joints executed.

Despite technical recommendations from various high-strength steels manufacturers, such as ESAB
(Washington DC, USA), SSAB (Stockholm, Sweden), Dillinger (Stuttgart, Germany), and ThyssenKrupp
(Essen, Germany) [2, 14, 15, 16], there is no unified scientific methodology applicable to all welding
processes. This highlights the need for a deeper understanding of the welding characteristics of high-
strength steels and the development of practices that ensure superior quality welded joints.

1.2 Classification of high-strength steels

The continuous development of manufacturing processes has enabled the production of steels not only
with higher strength but also with improved toughness, better weldability, enhanced cold workability, and
increased corrosion resistance. These advancements have made high-strength steels an attractive material
for structural applications, particularly when considering manufacturing costs, energy savings, material
costs, and the reduction of CO2 emissions over the entire lifecycle of weight-critical welded construction
projects [17].

The evolution of high-strength steels development is illustrated in Figure 1.2.
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Fig.1.2 The evolution of high-strength steels: I - Normalized Steels; = Thermomechanically
Rolled Steels; m% - Quenched and tempered steels. [10]

The main heat treatments applied for the development of high-strength steels are: normalization (N),
thermomechanical controlled rolling (M), and quenching and tempering (Q) [13].
Some normalized fine-grained steels exhibit moderate strength of up to 460 N/mmz2, while certain
thermomechanically rolled steels can have a yield strength of up to 690 N/mm2, whereas quenched and
tempered steels can reach very high fracture strength values of up to 1300 N/mm?2 [22].
1.3 Particularities of High-Strength Steels

The main characteristics of high-strength steels are their mechanical strength and high level of
toughness. It is important to emphasize that, depending on the specific conditions of use, the effects of
mechanical stresses, temperature, and time on these properties must be carefully evaluated. Additionally,
a thorough understanding of the behavior of these steels during welding is of particular importance.
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1.4 Conclusions regarding the use of high-strength steels in welded constructions

e The continuous development of industrial manufacturing processes, with increasingly higher
demands regarding the stresses during manufacturing, has led to the necessity of creating
materials that ensure high mechanical properties while maintaining high fracture energy at
low temperatures.

e The development of high-strength steels (HSS) began in the mid-20th century, with the
emergence of normalized steels having a fracture strength value of 400-500 MPa (S355N/NL,
S460NL/ML), reaching today values of 1400 MPa for ultra-high strength steels (S1300Q —
see § Figure 1.2), or 1700-2000 MPa for advanced high-strength steels (MS 1250/1500) [37].

e High-strength steels are used for their high mechanical properties, corrosion resistance, and
fracture energy at low temperatures, thus ensuring significant weight reduction of the structure
and enabling their use in different environmental conditions.

e High-strength steels are used in various industrial fields. In the mid-20th century,
normalized steels began to be used for the fabrication and repair of storage and
transportation tanks and containers through welding. With the development of this category
of steels, their applicability has expanded into different industrial fields: automotive
(structural strength), railway transport (tanks for transport, infrastructure), offshore drilling
platforms, shipbuilding, energy (wind turbines, transmission towers, and other energy-
related structures), construction and infrastructure (buildings, bridges), and heavy equipment
manufacturing (lifting equipment, excavators, bulldozers, and other excavation machinery).

Chapter 2. Current status regarding the welding of high-strength
steels

2.1 Welding behavior of high-strength steels

High-strength steels, subjected to heat treatments to improve their mechanical properties, exhibit
good weldability and can be welded by most available processes. However, certain technological issues
may arise during welding, among which the following stand out:

. Cold cracking, caused by structural transformations (formation of hard structures such as
bainite or martensite) in combination with the presence of diffusible hydrogen in the material, as well as
stresses generated during the welding processes.

. Degradation of toughness properties, manifested by a reduction in fracture energy under
dynamic loading and an increase in the ductile-to-brittle transition temperature, factors strongly influenced
by the steel's microstructure, especially by the type and distribution of precipitates formed during the
cooling process.

Weldability is closely related to the material's yield strength. During the welding process, particular
attention must be given to the steel's susceptibility to cold cracking, a phenomenon influenced by internal
stresses that arise during welding, the presence of diffusible hydrogen (from the base material, filler
material, surrounding environment, etc.), and the hard, brittle structure. Regardless of the type of steel
used, strict control of the heat input during welding is essential. In particular, the preheating temperature
must be properly managed to minimize cracking risks and ensure the integrity of the welded joint [25].
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2.1.1 Weldability of normalized steels

Fine-grained normalized steels have good weldability if the recommendations from the EN 1011-
2:2002/A1:2004 and SEW 088:2017 standards [38..40] are followed. Fine-grained steels are deoxidized
steels, characterized by the presence of nitrides and carbides in the crystalline structure, formed at high
temperatures. These fine precipitates prevent grain growth in the austenitic phase and result in the
formation of a fine grain structure.

For these steels, under certain conditions, preheating to a specific temperature is necessary to
prevent cold cracking [41]. An important parameter in this process is the weld cooling rate, indicated by
the tg/5 value, which represents the time required for the weld to cool from 800°C to 500°C. Fine-grained
normalized steels exhibit good welding behavior and can be welded by practically any welding process,
but some issues may arise, such as cold cracking or deterioration of toughness characteristics due to a
decrease in impact energy and an increase in the ductile-to-brittle transition temperature. These
phenomena are mainly influenced by the metallographic structure and the distribution of precipitates.

2.1.2 Weldability of thermomechanically rolled steels

Thermomechanically treated steels are known for their weldability due to their low carbon content
(carbon equivalent). These steels offer superior welding performance compared to normalized steels, with
a significant reduction in elements that contribute to hardening.

This reduction in carbon equivalent makes thermomechanically rolled (TM) steels and those with
accelerated cooling (AC) less prone to cold cracking compared to conventional steels, and the preheating
temperatures required for welding are lower. The welding conditions for these steels are similar to those
for normalized steels.

Welding of thermomechanically treated steels can be carried out with most welding methods. The
choice of filler material is important to ensure the quality of the welded joints. Typically, the strength of
the filler material is similar to that of the base material, although in some cases, filler materials with lower
strength are preferred. In these cases, the filler material should have a chemical composition with a higher
concentration of hardening elements and, as a result, greater sensitivity to cold cracking than the base
material. [25, 48, 49, 50].

2.1.3 Weldability of quenched and tempered steels

The weldability of quenched and tempered steels is weaker compared to other types of steels.
Depending on their composition, they may be weldable under specific conditions or even unweldable.
Weldability is influenced by the material's yield strength, and attention must be focused on its sensitivity
to cold cracking. In all cases, it is necessary to control the heat input into the base material during welding,
as well as adhere to preheating temperatures.

The main factor to consider when welding fine-grained steels is the evolution of the thermal field,
which influences the Heat-Affected Zone (HAZ) through:

« The tendency to harden due to the formation of martensite and the increased risk of cracking.
» The recombination of diffusible hydrogen is more pronounced in fine-grained steels due to the size of
the grain boundaries, creating more potential zones for hydrogen recombination.

Preheating is essential to prevent cold cracking and other defects [53]. It allows for the removal of
hydrogen and reduces internal stresses. In multi-pass welding, preheating may be omitted for the first pass
if an adequate temperature is maintained between passes.

2.2 Technological elements in welding high-strength steels

Weldability is determined by the metallurgical, technological, and welded construction behavior of
the base material subjected to the welding process. Equivalent carbon, linear energy, preheating
temperature, and cooling time significantly influence the welding process outcomes.

-6-



Politehnica PhD . . Adrian F.
Bucharest Thesis Research on welding high-strength steels FLOREA

Residual stresses arise from the uneven distribution of heat during welding and from the behavior of
materials during the heating and cooling processes. The fatigue strength of the welded joint is higher when
residual stresses are reduced.

2.2.1 Equivalent Carbon

The metallurgical behavior of welding low-alloy steels, which have a particularly wide range of
applications, is primarily determined by their chemical composition. This behavior is commonly assessed
based on the equivalent carbon content (CET). Over the past 50 years, numerous formulas for calculating
the equivalent carbon have been developed [62], based on the results of tests (hardness, resilience, cold
cracking, metallographic, etc.) for welds made in single-pass or multi-pass conditions, under various
technological conditions [63].

2.2.4 Cooling time ts/s

A global indicator for analyzing the thermal cycle in welding is represented by tgss. It is observed that
the cooling time is inversely related to the cooling rate, meaning that a large tg/s corresponds to a slow
cooling rate and vice versa [69].

The cooling time from 800°C to 500°C is the most important parameter influencing the properties of
the welded joint in HSS, especially the microstructure of the heat-affected zone (HAZ) [70..73]. This is
influenced by the amount of heat input, preheating and interpass temperatures, steel thickness, and the
shape of the weld [74..76].

The cooling time from 800°C to 500°C, tsss, is determined analytically and with the help of
diagrams/nomograms, depending on the type of heat conduction, whether two-dimensional or three-
dimensional, occurring during the welding process[40, 54].

2.3 Fusion welding processes used for joining high-strength steels

Currently, numerous welding processes [81, 82], are available, which can be classified based on the
energy source used to create the joints. In most cases, the energy used is of an electrical nature,
transformed into heat through the electric arc or the Joule-Lenz effect. Additionally, thermal energy can
be generated through oxy-gas flames, thermochemical reactions, electron and photon beams, ultrasound,
and mechanical friction [54].

Fusion welding involves melting and joining materials, often with the addition of filler material in
the welding zone to facilitate the connection. Among the welding techniques, electric arc welding is one
of the most commonly used, where the energy generated by the arc melts both the surface of the parts to
be joined and the filler material (such as coated electrodes, wires, or rods).

2.4 Conclusions regarding the welding of high-strength steels

e The weldability of high-strength steels is conditioned by the carbon content, as well as the alloying
elements, with the equivalent carbon being a general criterion for analyzing the weldability of
these types of materials.

e The main issues regarding the weldability of high-strength steels are related to the risk of cold
cracking (due to the formation of hard and brittle structures, the presence of internal stresses, and
diffusible hydrogen) and the loss of toughness properties, manifested by a reduction in fracture
energy under dynamic loading and an increase in the ductile-to-brittle transition temperature (due
to grain coarsening).

e For successful welding of high-strength steels, it is recommended to perform preheating (to
prevent cold cracking) and to use stringer bead welding (to avoid grain growth).

e Most classical fusion welding processes can be used to make joints in high-strength steels, with
particular attention given to processes where heat dissipation occurs rapidly (such as EBW and
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LASER), as there is a risk of forming hard and brittle structures and excessively increasing the
mechanical properties in the heat-affected zone (HAZ) and the welded joint.

Chapter 3. Objectives and structure of the doctoral thesis.
research equipment.

3.1 Objectives of the doctoral thesis

The choice of the doctoral thesis topic starts from the practical need to reduce the size and weight
of products used in various industrial sectors. The specific case analyzed in this work is the reduction of
the wrgight of the chassis of a rail welding installation (figure 3.1.)
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Fig. 3.1. Execution drawing of the chassis for the rail welding installation (FBW machine)

The reduction in product weight can be achieved by decreasing the thickness of the components
used in the welded assembly of the chassis. Under these conditions, it is necessary for the base materials
used in manufacturing the components of the assembly to exhibit superior mechanical and functional
properties, compensating for the reduced thickness while maintaining strength and integrity under
operational stresses.

Considering this practical necessity, it is proposed to replace the S355 ML base material, currently
used in the welded construction of the chassis assembly, with a high-strength steel material.

The primary objective of the doctoral thesis is the development of welding technologies for S890QL
steel in the context of its use as the base material for the manufacturing of the chassis for the rail welding
installation.
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Fig. 3.2. Chassis for the rail welding installation

In the doctoral thesis, based on the current state of knowledge, the theoretical research covered the
following aspects:

Understanding the main types of high-strength materials, highlighting their historical evolution
and mechanical properties.

Identifying the main weldability issues encountered when welding high-strength materials.
Understanding the primary fusion welding processes used for high-strength materials,
including their advantages, disadvantages, and specific limitations in applicability.

The experimental research focused on the following objectives:

Developing an experimental plan for assessing the weldability of the high-strength steel
S890QL.

Creating welding technologies for S890QL material to replace the base material S355ML.
Implementing the experimental plan and conducting experimental research on welding S890QL
steel.

Performing nondestructive testing on the welded samples made from S890QL steel.
Conducting destructive testing on the welded samples made from S890QL steel.

Measuring and validating the cooling time t8/5 using various experimental methods (including
contact thermocouples and infrared thermography).

Finite element modeling of the thermal field during welding and measuring the technological
parameter t8/5.

Finite element modeling of the operational behavior of the welding equipment chassis made
from base materials S355ML and S890QL.

3.2 Structure of the doctoral thesis

Based on the objectives outlined in Subchapter 3.1, a general schematic for all activities undertaken
within the scope of the thesis has been developed, as shown in Figure 3.3.

The general activity schematic was founded on the knowledge gained through the theoretical
analysis of the main high-strength materials, their chemical composition, properties, welding behavior,
and applicable welding processes. Additionally, it incorporates the practical experience accumulated in
the workplace.
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Fig. 3.3. Structure of the doctoral thesis

3.3 Research equipment used in the experimental program
Based on the knowledge gained from studying the specialized literature on the weldability of high-
strength steels, as well as practical experience accumulated in the workplace, an experimental plan was

developed to investigate the weldability of S890QL steel.
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The experimental program involved welding 12 samples using the robotic GMAW process. After
welding, the samples underwent non-destructive and destructive testing to assess their quality and identify
valid welding technologies.

The experimental program, as well as the examinations and tests conducted, utilized equipment
from the laboratories of the University Politehnica of Bucharest and from collaborating companies.

3.3.1 Welding equipment for S890QL. steel samples

The samples were welded using the Fanuc ARCMate 100iBe robotic cell, located in the Robotic
Welding Laboratory of the Department of Quality Engineering and Industrial Technologies (ICTI), within
the Faculty of Industrial Engineering and Robotics (FIIR) (Figure 3.4.)

b) c)
Fig. 3.4. Robotic cell components: a) — Robotic cell assembly, b) — Fanuc Arc Mate 100iBe
welding robot, ¢) — Fronius TPS 4000 welding equipment.

Chapter 4. Experimental research on welding high-strength
steels

4.1 Input data
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Based on the findings from the current state-of-the-art analysis, the following research and
development directions are considered relevant for optimizing welding technologies for high-strength
steels.

The experimental program was designed to develop an optimal welding technology applicable to
the high-strength steel S890QL, aiming to use it in the manufacturing of the "rail welding equipment
chassis" assembly. The adoption of this new material over S355ML steel provides the advantage of
reducing the assembly's overall weight.
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4.2 Base material

The base material used for the experimental program was S890QL steel, a high-strength structural
steel characterized by a guaranteed minimum yield strength of 890 MPa. This material offers an
outstanding combination of strength and impact toughness, along with optimal machinability properties.
It is an ideal choice for advanced supporting structures such as mobile cranes, loaders, trailer chassis, and
agricultural equipment. Additionally, the material has superior bending capacity, excellent surface quality,
high weldability, and guaranteed flatness, thickness, and bending properties.

The steel designation is as follows [127]:

e S - Construction steel;

e 890 - Minimum yield strength expressed in MPa;
e Q- Quenching and tempering;

e L -Low temperature;

The chemical composition of S890QL steel, from batch 629660, according to the quality certificate
number 1220479001 (Appendix 1), as well as its equivalences with other types of steels according to
different standards, are presented in Tables 4.1 and 4.2. The mechanical properties of the steel are provided
in Table 4.3.

4.2.1 Calculation of weldability indices

Considering the influence of alloying elements on the base material properties (Chapter 1.2.4, according
to Table 4.3.), the base material was purchased with a quality certificate 3.1 (Appendix 1), in accordance
with the standard SR EN 10204:2005 [130]. Additionally, the material is accompanied by a quality
certificate and delivery conditions, as per the standard SR EN 10025-6+A1:2023 [21]. The assessment of
the risk of cold cracking, as well as the weldability of the base material, is carried out using the equivalent
carbon content, the cold cracking index (PCM), and the hot cracking index (HCS) [129]. (Chapter 1.2.3.3
and Chapter 1.3.).

4.2.2 Determination of phase transformation temperatures

To determine the influence of preheating temperature on the structural transformations during the
cooling of the weld bead deposited using the automated MAG welding process on S890Q steel, it is
necessary to calculate the start and end temperatures of the martensitic transformation.

Transformation temperatures are critical for estimating the types of microstructures that will form
upon cooling after welding and for determining the optimal preheating temperature in the welding process
[131]. For non-alloyed or micro-alloyed steels, the main temperatures at which transformations occur
during cooling, under conditions close to equilibrium (according to the Fe-FesC diagram), are:

4.3 Selection of the welding process

To optimize the welding process for S890QL steel, the automated or robotic GTAW-MAG (Gas
Tungsten Arc Welding — Metal Active Gas) processes represent one of the most effective technical and
economic solutions. This welding process allows precise control of the welding parameters, which is
essential to maintain the material’'s mechanical properties, such as tensile strength and toughness, which
can be negatively affected by excessive temperature variations during the welding process.

4.5 Establishing the technological parameters of the welding regime

4.5.1 Determining the preheating temperature (Tpr)

The metallurgical effects of preheating depend on the concentrated action of factors such as:
cooling time tgss, the position of Ty relative to Ms and Mg, the particular shape of the anisothermal and
isothermal decomposition diagrams of undercooled austenite. In the case of steels with high welding
requirements, it is necessary to know these parameters when establishing Tpr.
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Following the application of methodology B in the SR EN 1SO 1011 standard, the two values
considered in the experimental research are: the maximum preheating temperature Tpmax = 150°C and the
approximate minimum value Tpmin = 100°C.

These two preheating temperature values chosen for the experimental research correspond to the
values prescribed by the manufacturers of S890QL steel [43, 134].

4.5.2 Calculations for estimating the limit values of cooling time between 800°C and 500°C
(tsss)

Determining the limit value of the tgs parameter, based on a maximum hardness requirement in
the heat-affected zone (HAZ), in this case 450 HV10, helps in developing welding technologies that
reduce the risk of cold cracking. The goal is to select welding regime parameters such that the cooling
time t8/5 is greater than the calculated limit value, but within the limits set by the steel manufacturers.

For optimizing the welding technology, three distinct cases were considered:

. Case 1 — tg;5 = 8 s: The welding technology respects the value of tgss, as indicated by the
calculations. However, there is a risk of cold cracking and excessive hardening in the HAZ if the value
accidentally falls below the required threshold,;

. Case 2 — tg;s = 12 s: In this case, the welding technology respects the maximum value of
t8/5, as recommended by the plate manufacturer. This is a limit case in which the welding technology
results in a cooling time close to the critical value recommended by the manufacturers of S890QL
material. Under these conditions, due to the combined action of certain objective factors, an accidental
increase in grain size may occur, leading to a decrease in mechanical and toughness properties;

. Case 3—tgs=17s:

In this case, the recommendations for the value of tg/s are not followed, resulting in a cooling time
exceeding the limit, which may cause an increase in grain size.

These cases are used to illustrate the impact of technological parameters on the material behavior
in the HAZ and to optimize the welding process to reduce the risk of defect formation.

4.5.3 Determining the linear energy used in the welded specimens

To calculate the linear energy values, the cooling time equation (4.13) is used, according to [40].
Considering the input values in the experimental program for cooling time tgs (8 s, 12 s, and 17 s),
preheating temperature (100°C and 150°C), and material thickness (s = 12 mm) under two-dimensional
propagation conditions, the linear energy value can be calculated using equation (4.14).

From the application of equation (4.14) and taking into account the tg/s and T,r parameters, we
obtain:

- Q=0,84 kJ/mm for tg;s = 8s and Tpr = 100°C,;
- Q=0,72 kJ/mm tg5s = 8s and T,r = 150°C;

- Q=1,03 kd/mm tg;s = 12s and Tpr = 100°C;

- Q=0,88 kJ/mm tg;s = 12s and Tpr = 150°C;

- Q=1,23 kdJ/mm tg;s = 17s and Tpr = 100°C;

- Q=1,04 kJ/mm tgs = 17s and T,r = 150°C.
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4.5.4 Establishing the welding regime parameters

In order to simplify the research and enable quantitative and qualitative comparisons of the results
obtained, welding speeds between 3...8 mm/s will be chosen, as recommended by the filler material
manufacturer.

Based on the calculated linear energy values and considering the arc voltage and welding speed
values selected, the welding current intensity required for the experimental stage is determined by
applying the calculation formula (4.15) [40].

Tabel 4.1 Welding regime parameter values

Transfer Specimen Tor tys E la U, Vs Va |Transition thickness

mode No. [°C] [s] | [KImm] | [A] | [V] | [mm/sec] |[m/min] [mm]
1 100°C 8 0,84 257 | 26 7 8.2 13.6

8) 2 150°C 8 0,72 260 | 26 8 8.3 14.8

SEI: 3 100°C 12 1,03 290 | 30 7 9.3 16.7

2 4 150°C 12 0,88 270 | 27 7 8.6 18.0

g 5 100°C 17 1,23 293 | 30 6 9.5 19.9

6 150°C 17 1,04 314 | 31 8 10.3 21.5

7 100°C 8 0,84 165 | 18 3 4 13.6

O 8 150°C 8 0,72 180 | 19 4 4.4 14.7

31;: 9 100°C 12 1,03 190 | 19 3 4.7 16.7

% 10 150°C 12 0,88 200 | 21 4 5.1 18.1

z 11 100°C 17 1,23 206 | 21 3 5.3 19.8
12 150°C 17 1,04 194 | 19 3 4.8 215

Following the calculation of the welding regime parameters, a model of the welding procedure
specification was developed (Annex 3) [135].

4.6 Description of the experimental setup used for welding sample preparation

The experimental setup used for the welding of samples consists of:

. GMAW welding power source (FRONIUS TRANSPULS SYNERGIC 4000);

. Welding robot (FANUC ARC Mate 100iB);

. Temperature recording device with thermocouples (GRAPHTEC midi LOGGER
GL200A);

. Infrared thermographic camera (FLIR E95);

. Oven for preheating the workpieces;

. Digital thermometer (GTH 1150).

The thermal field was visualized at both ends of the sample and in the middle of the joint area to
ensure that the measurements were not influenced by phenomena occurring at the beginning and end of
the weld bead.

The welding was performed in direct current with direct polarity using a MAG welding power
source.

The experimental setup for welding the samples is shown in Figure 4.3.
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Fig. 4.3. The experimental setup used for robotic MAG welding of the samples and for monitoring the
welding process.

4.7 Experimental procedure [136]

In order to achieve the objectives established by the thesis topic, namely the analysis of welding
possibilities for the high-strength steel S890QL, with the intention of using it in the construction of the
railway track welding machine chassis, the experimental part was focused on three research directions:

. The first direction, which considers the cooling time tgsim for obtaining a maximum
hardness of 450 HV10 in the Heat-Affected Zone (HAZ), analyzing three variants in which tgss: the first
variant using ts/sim = 8 S, the second variant where tg;s = 12 s is the maximum value recommended by steel
manufacturers, and the third variant where tg;s = 17 s, a value exceeding the recommended limits;

. The second direction, which starts from the three previously presented cases, taking into
account the preheating of the welded samples: the first case at a temperature of 100°C, the minimum value
resulting from the calculation, and the second case at a temperature of 150°C;

Note: It is mentioned that the preheating temperatures discussed in the experimental program

correspond to practical situations encountered in the production of welded products used in the

metal construction industry.

. The third direction, where for the six previously presented variants, the influence of
changing the transfer mode (short-arc and spray-arc) is analyzed while keeping the other technological
parameters constant (tsss, Tpr, Ei).

The experiments were conducted in accordance with the research directions outlined, respecting
the parameters indicated in Table 4.7.

The experiments were designed in such a way that the obtained results could be implemented in
industry, particularly in the case of root and fill layers made using the MAG welding process, and serve
as an important foundation for developing new welding technologies in the analyzed field.

The dimensions of the samples used in the experiments were 150x300x12 mm.

4.8 Conclusions

In order to carry out the experimental program for analyzing the welding possibilities of high-
strength steels (specifically S890QL steel), a total of 12 welded samples were made, considering the
following technological parameters:

- Preheating temperature (Tpr): The preheating temperature was calculated using
Method B, as described in the SR EN 1011-2:2002 standard, a methodology for
preventing hydrogen-induced cracking in unalloyed steels with fine grain structure and
low alloying content. According to the described methodology, the preheating
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temperatures used for the welded samples were: Tpr = 100°C and Tpr = 150°C. The
calculation of the preheating temperature values took into account the equivalent
carbon content, diffusible hydrogen, and the material thickness used in the
experimental samples (see § 4.5.1);

- Cooling time between 800°C si 500°C (tgs): The cooling time tgs was calculated
considering the maximum hardness in the Heat-Affected Zone (HAZ), as well as the
recommendations of high-strength steel manufacturers. The cooling time values used
were: tgs =8, tgs =12 s, and tg;s = 17 s (See § 4.5.2);

- Filler material transfer type: short-arc transfer and spray-arc transfer;

- Heat input: heat input was calculated by substituting the parameters into the cooling
time tg/s equation. After performing the calculations, the following linear energy values
were obtained (see § 4.5.3):

*  Q=0,84 kJ/mm pentru tgs = 8s and Tpr = 100°C;
*  Q=0,72 kJ/mm pentru tgs = 8s and Tpr = 150°C;
*  Q=1,03 kJ/mm pentru tg;s = 12s and Tpr = 100°C;
+  Q=0,88 kJ/mm pentru tgs = 12s and Tpr = 150°C;
+  Q=1,23 kJ/mm pentru tgs = 17s and Tpr = 100°C;
*  Q=1,04 kJ/mm pentru tgs = 17s and Tpr = 150°C.

- Welding current intensity (I), arc voltage (U), and welding speed: The welding
parameters were chosen based on the linear energy value, the type of filler material
transfer, and the recommendations of the additive material manufacturer. The
parameters used in the experiments are presented in Table 4.7 (see § 4.5.4).

To eliminate the influence of the human factor on the quality of the welding process, the samples
were made using a robotic GMAW welding process, ensuring precise control of the welding speed
and consistency of the welding parameters over time.

Chapter 5. Experimental research on the analysis of welded

samples

To evaluate the conformity of the welded samples and validate the designed welding technologies,
the resulting welded samples were subjected to nondestructive examinations and destructive tests. The
methods for analyzing the welded samples are presented in Figure 5.1.

incercarile/examinari distructive Examinarea nedistructiva
ale imbindrilor sudate a imbinarilor sudate
Incercarile/examinari distructive efectuate pe Examinarea nedistructive efectuate pe
probele sudate necesare analizei probele sudate necesare analizei

Masurarea Examinarea

durititii termografica

i @ Anali bel @ .
Incercarea nalza probelor - timpului tgs
la tractiune \ sudate

incercareala
incovoiere <
prin soc Examinarea
E> vizuald

/

7N\
Examinarea micro (@. Examinarea
si macrografica = = cu lichide
— penetrante

Examinarea cu
ultrasunete

Fig. 5.1. Analysis of results for welded joints made of S890QL material
5.1 Estimation of the t8/5 parameter values and analysis of the thermal field during welding
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The thermal cycle during welding influences the heat distribution in the welded components as well
as the phase transformations occurring during the solidification of the molten metal pool [137, 138].
Monitoring the thermal field in welding processes is necessary to ensure compliance with the welding
technologies and critical parameters such as preheating temperature (Tpr) and cooling time between 800°C
and 500°C (ts/s), among others [138].

For monitoring the thermal field on the surface of components, both contact methods (e.g., contact
thermometers or thermocouples) and non-contact methods (e.g., pyrometers or infrared thermographic
cameras) can be used [141, 144]. Recently, thermographic systems have increasingly been employed for
temperature distribution measurements and welding process control. Infrared cameras, in particular, have
been widely utilized for real-time studies of the welding process [145..148], enabling non-contact
measurements and providing results with high accuracy and precision. The data collected by the camera
offers insights into various aspects of welding outcomes, such as temperature distribution, geometric
shape of the welded joints, and potential imperfections. The temperature data recorded by the camera can
also be used to calculate cooling times within the range of 800-500°C, during which phase
transformations occur in the material, affecting its microstructure and mechanical properties.

5.2 Estimation of the ts;s parameter values using contact thermocouples

Experimental measurements of the thermal field were conducted using thermocouples attached to
the machined surface of the components, specifically in the heat-affected zone. The recorded temperature
values were acquired using the Graphtec midi Logger GL200A equipment (Figure 5.2). The temperature
variation of the thermal cycle during the welding processes for the 12 test specimens is presented in
Figures 5.3..5.14. Based on the temperature variation, the cooling time tg;s can be measured for each
specimen to verify the accuracy of the selected welding technology parameters. The measured values are
summarized in Table 5.1.

5]

]

o
S S
Q"

Fig. 5.2. Measurement of temperature values in the welded joint areas
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Fig. 5.3 Temperature variation of the thermal cycle for sample P1

Tabel 5.2 Cooling time values tgs

Nr. Acrc transfer Specimen Imposed tg/s Mez;lsured Difference | Deviation
crt. mode Code [s] [Ss’jr’ [s] [%]
1. P1 8,0 0 0
2. P2 8 8,1 0,1 1.23
3. Spary-arc P3 12 0 0
4, P4 12 12,1 0,1 0.82
5. P5 16,9 -01 0.59
6. P6 17 17,1 0,1 0.58
1. P7 7,9 0,1 1.26
8. P8 8 8,1 0,1 1.23
9. Short-arc P9 11,8 -0,2 1.69
10. P10 12 12 0 0
11. P11 17 0 0
12, P12 17 17 0 0

Following the analysis of the values presented in Table 5.1, it can be observed that in certain cases,
there are slight differences between the calculated and measured ts/s cooling time values. The maximum
differences observed were t = -0.2 s, representing a variation of 1.69%. These discrepancies between the
imposed and measured t8/5 parameter values may be attributed to measurement errors or the specific
conditions under which the experimental research was conducted.

5.3 Estimation of the tss parameter values and thermal field analysis during welding using
infrared thermography [149]

During the experiments, the thermal cycle associated with the welding process was monitored using
the FLIR E95 infrared thermography camera (Section 3.1.2). This setup enabled the practical
determination of specific thermal parameters, such as the t8/5 cooling time, and provided a detailed
representation of the thermal field distribution across the entire surface of the welded piece and throughout
the entire welding process.

The use of an infrared thermography camera offers an overview of the thermal field of the joint with
the advantage of monitoring the entire area of interest in a single recording.

Figures 5.15.a and 5.15.b illustrates thermographic images captured during the welding process, while
Figure 5.15.c illustrates the temperature distribution along the weld seam at a specific moment after the
process began. By continuously tracking the welding speed and elapsed time, the position of the point of
interest and its corresponding temperature can be determined at any given moment.
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Fig 5.16. Calibration of the infrared thermography camera using the contact thermometer: a) — infrared
thermography camera, b) — digital contact thermometer.

To achieve the distribution of temperature values obtained from the images captured using the
infrared thermography camera, a specialized application was developed in Matlab (version R2017a) that
is capable of "reading" each image from the recorded video file and analyzing it in terms of temperature.
The application generates a thermal distribution map. Using this application, researchers can accurately
assess temperature values during the welding and cooling processes and identify potential problem areas,
thus contributing to the improvement of the quality and reliability of the welds.

Based on the temperature values presented in Table 5.2, graphs of the temperature variation for
samples P1 and P2 were plotted, using the thermocouples (P1, P2) and the infrared thermography camera
(P1IT, P2IT), as shown in Figure 5.17.

5.4 Nondestructive examination of welded joints

Nondestructive examination plays an important role in evaluating the quality of welded joints,
providing valuable information about the structural integrity without compromising the tested component.
For this study, several nondestructive testing methods were applied (visual inspection, penetrant testing,
and ultrasonic testing), followed by the collection of samples for destructive testing.

These methods were selected for the experiments to ensure a complete and detailed evaluation of
the quality of the welded joints, providing both surface and volumetric inspections.

5.8 Macroscopic and microscopic analysis of welded joints

5.8.2 Macroscopic and microscopic examination

The optical macroscopic and microscopic examination was conducted in the LAMET Laboratory, in
accordance with SR EN 1SO 17639:2022 [165, 166].

The micrographic and macroscopic examinations were performed using the OLYMPUS GX51 optical
microscope and the Quanta Inspect S scanning electron microscope (SEM).
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Macroscopic and microscopic examination of sample P1

c)
d)

e)

f)
9)

h)

Transition zone between the weld bead and the base material, at the surface of the weld, 50x.
Macroscopic analysis of the transition zone between the base material and the weld: A continuous
fusion line is observed, without imperfections, and grain growth in the HAZ (Heat-Affected Zone),
100x.

Detail of the transition zone between the weld and base material in the HAZ, 200x.
The weld: Fine dendritic microstructure in chains, 200x.

Microstructure of the upper HAZ of the weld: Coarse martensite grains and residual austenite,
200x.

Microstructure of the weld in the root zone, 100x.

Detail of the microstructure in the root HAZ: Coarse martensite grains and residual austenite,
200x.

Detail of the HAZ: Coarse martensite grains and small areas of residual austenite, 1000x.

Residual austenite forms when cooling is faster than equilibrium cooling, as the transformation

time is too short. Residual austenite tends to revert to ferrite and pearlite during subsequent reheating
(thermal treatment, local weld repairs), generating internal stresses that are sufficiently large to cause

cracki

ng. Similarly, martensite and bainite can revert to ferrite/pearlite if the Ms or Bs temperatures are

exceeded (the upper transformation temperatures, calculated in § 4.4.2). The Ms value for the analyzed
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steel (S890QL) is 405°C, which can easily be reached during reheating for the deposition of subsequent

layers.

5.9 Welding Procedure Qualification Records

Based on the analysis of the results obtained from the experimental investigations, procedure

qualification records were written for two welding technologies: the first procedure is based on short-arc
transfer welding for plates with a thickness of less than 8 mm, and the second on spray-arc transfer welding
for plates with a thickness greater than 8 mm (Annex 7).

5.10 Conclusions regarding the welding of high-strength steels

v

v

Monitoring the thermal field during the welding of high-strength steels can be done both using
contact thermocouples and with an infrared thermography camera;

In the case of measuring welding process temperatures using contact thermocouples, tss cooling
time values were obtained with a maximum variation of 1.66% compared to the calculated values,
leading to the conclusion that the technological requirements of the welding process were met;
When monitoring the thermal field with an infrared thermography camera, the differences between
the t8/5 parameter values determined by thermography and those based on mathematical formulas
fall within acceptable ranges, with errors of up to 2.75% from the calculated tgs time;

Monitoring the thermal field during welding with infrared thermography constitutes a suitable tool
for establishing the temperature distribution on the surface of the analyzed sample, as well as for
measuring the tg/s parameter;

Hardness measurements in characteristic zones highlighted an increase in hardness values in the
weld bead or the heat-affected zone (HAZ), reaching a maximum value of 391 HV0.2, which is
below the maximum limit imposed by current standards;

The results obtained from tensile testing showed that the specimens failed at a rupture strength
value below Rn=940 MPa (the minimum guaranteed value for S890QL steel) for specimens with
a preheating temperature of T,=100°C. This leads to the recommendation to use a preheating
temperature of T,=150°C;

The yield strength values of the welded specimens exceed the minimum guaranteed limit of
Rpo.2=890 MPa in all cases where a preheating temperature of T,=150°C was used;

For the preheating temperature of T,=100°C, values below the minimum guaranteed Rpo.» value,
or very close to it, were obtained. Therefore, the recommendation is to use a higher preheating
temperature;

The tg/s values considered in the experimental program do not lead to excessive hardening in the
weld bead zones (which could result in cracking), nor overheating that would cause a loss of
mechanical properties.

Conclusions regarding the influence of welding parameters, cooling times, and linear energy on

the microstructure and results of destructive testing of samples P1-P12:

1. Fusion line quality:
In all analyzed samples, the fusion line between the base material and the weld is continuous, with
no visible imperfections at the macroscopic level. This indicates a high-quality welding process,
ensuring structural integrity.

2. Heat-affected zones (HAZ):
The weld microstructure consistently shows fine dendritic formations aligned along the thermal
flow direction, suggesting controlled solidification with an appropriate cooling rate to prevent
internal defects.
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e Inthe HAZ, an increase in grain size is observed, typical for regions exposed to high temperatures
followed by cooling. This effect is more pronounced in the over-heated zones.

e In all samples, the HAZ exhibits coarse martensite grains associated with high temperatures and
rapid cooling. These grains can influence the strength and fatigue behavior of the weld.

e Coarse martensitic transformations are often observed in the transition and root zones, indicating
thermal conditions that favor incomplete austenite-martensite transformations.

e Insome samples (e.g., P3), carbide precipitates at the grain boundaries were identified, which may
contribute to increased hardness but also to potential embrittlement of the HAZ.

3. Weld structure:

e In the root zone, the microstructure presents acicular dendritic formations oriented along the
thermal flow direction, with potential for the formation of columnar grains oriented along the
cooling direction. Small precipitate phases are also observed, which may contribute to local
hardness increases.

4. Fillet angles:

e The fillet angles between the weld and the base material range from 122° to 178°, indicating a
broad distribution of geometric conditions. Larger angles (e.g., 178° in P4) suggest significant
overbeading of the weld, which may influence residual stresses and mechanical performance.

5. Base material:

e The base material structure consists of polyhedral ferrite and pearlite grains, typical for
thermomechanically rolled material. At the interface with the HAZ, the grains become elongated
due to thermally induced transformations.

6. General conclusion:

e The microstructure of the analyzed samples is generally uniform, with no defects, suggesting the
use of a controlled welding process. However, careful monitoring of the HAZ is recommended to
minimize coarse grain formation and improve phase transitions.

e The fillet angles and the distribution of precipitates should be correlated with mechanical testing
to confirm compliance with applicable standards.

e In samples welded with lower preheating temperatures, acicular martensite and residual austenite
are present, with a tendency for coarse grain formation in the HAZ as the cooling time increases.
The cooling time (tgs) significantly influences the final weld structure. In samples with short
cooling times (P1, P2, P7, P8), the weld microstructure is predominantly dendritic, with fine and
uniform shapes. In contrast, samples with longer cooling times (P3, P4, P6, P10) exhibit a coarser
and less homogeneous microstructure, with carbide precipitates in the HAZ and larger grain size.
This suggests slower cooling that favors precipitation and grain growth.

Chapter 6. Theoretical and experimental research on CFD-FEM
modeling in high-strength steel welding

A current trend in manufacturing processes is the minimization and/or elimination of non-
productive times in the manufacturing flow, including those allocated for preliminary testing of the
produced products and the developed technologies. To achieve this goal, one of the widely used methods
is simulating real working conditions with the help of specialized software packages [168].

Modeling manufacturing phenomena and processes is a challenge that has become possible due to
the development of new calculation techniques and algorithms, as well as the advancement of hardware
components in computer structures. The Computational Fluid Dynamics (CFD) method plays an
extremely important role in the design and verification of various projects involving fluid flow and heat
transfer, eliminating the need for the experimental phase, at least in certain stages of development, which
was previously indispensable. CFD analysis provides detailed information regarding the distribution of
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velocity, pressure, temperature, or other relevant fluid parameters in transient or steady-state conditions
[167].

For simulating the thermal cycle in welding, FEM offers a series of advantages, including:

- Multiple discretization options for the analyzed model, allowing easy analysis of phenomena
occurring in the weld bead and its adjacent areas;

- The ability to define different material characteristics for the materials used in the simulation;

- It allows for the interpretation and visualization of the thermal field resulting from welding;

- It enables approximation of the stress and deformation levels in the welded components.

6.1 CFD simulation of cooling time tsss

6.1.1 Input data for modeling the thermal field during welding

+ Base material: S890QL steel plate with dimensions 300 x 150 x 12 mm (Figure 6.2);

« Steel supporting plate with T-slot, dimensions 350 x 360 x 20 mm (Figure 6.3);

* Fixed-length weld bead: 300 mm (Figure 6.4);

» Moving welding pool;

« Ceramic support for root support (under the weld, between the steel plates and the T-slot plate).

Sh [mm] 7
s [mm] 3.5
Sph [mm] 2
Sbw [mm] 10
Sch [mm] 2
Scw [m m] 2
a [°C] 60

el

Fig.6.4. Geometric elements of the weld bead

6.1.2 Materials used for the experiments

The definition of the characteristics of the materials used was based on the chemical composition
and the welding process temperature. The characteristics of the materials used are presented in Table 6.1.

For the simulation of the thermal field during welding, the welding technology used in sample P1
(Table 6.2) was considered.

Figure 6.8 shows the distribution of the thermal field generated by the welding source at the
beginning of the welding process (Figure 6.8.a), at the midpoint of the process (Figure 6.8.b), and at the
end of the process (Figure 6.8.c).
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c)
Fig 6.8. Simulation of the Thermal Field Distribution of the First Layer (Root) for Sample P1: a) — at
the beginning of the welded sample —t = 0.5 s; b) — at the midpoint of the weld bead —t =23's; ¢) —at
the end of the weld bead —t =46 s.

6.1.4 Validation of simulation model results

The validation of the simulation model involves comparing the simulation results with the
temperature measurement data obtained using contact thermocouples. Figure 6.9 shows the temperature
variation for the two components at measurement points 1 and 2. Based on the temperature variation, the
te/s values for the two components were extracted, and these values are presented in Table 6.3. It can be
observed that the tgs values obtained from the simulation are tgs-1 = 7.57 s and tg/5-2 = 7.58 s, with a
measurement error of 5.25% and 5.37%, respectively.

6.2 Influence of base material modification on chassis assembly characteristics

Given the differences in the mechanical properties of S355ML and S890QL materials, it was proposed
to modify the thickness of the reinforcement elements of the main chassis frame without altering its overall
dimensions. Modifying the overall dimensions of the chassis and its components requires a detailed and
complex analysis of the entire welding equipment for the railway track rails.

After redesigning the chassis by replacing the base material and modifying the component
thicknesses, a comparative FEM analysis was performed, considering both the changes in the base
material properties and the modification of the material thickness in some of the components.

To analyze the mass difference of the chassis resulting from the base material modification and
component thickness change, a 3D model of the chassis was created in SolidWorks design software.
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Fig.6.11. Determination of the chassis assembly mass made of S890QL. steel.

From the analysis of figures 6.10 and 6.11, it can be observed that, following the modification of
the component thicknesses presented in table 6.4, the mass of the chassis assembly decreased from
2571.78 kg to 1768.39 kg. The analysis of the values shows that the chassis mass was reduced by 803.39
kg, which represents a 31.23% reduction from its initial mass.

6.3 FEM simulation of the welding machine chassis

For the simulation process, using the specialized software SolidWorks, the stresses resulting from
the use of the welding head were considered. The stresses applied to the chassis model were: 5000 kgf,
representing the mass of the welding head (longitudinally along the chassis or at a 60° angle to the chassis's
longitudinal axis), and 2800 kgf, from the mass of the welding head clamping device.

The purpose of using high-strength steels in such applications is often to reduce weight by
decreasing the thickness of components. Reducing the structural weight brings numerous advantages,
including reduced material consumption, fewer welding operations, and lower transportation costs..

-26 -



Politehnica PhD . . Adrian F.
Bucharest Thesis Research on welding high-strength steels FLOREA

b)
Fig.6.12. 3D model of the chassis: a) — in the displacement position; b) — in the operating position.

6.3.1 General loads and constraints of the study

According to the assembly and operating model, the chassis will have fixed attachment points on
the welding machine body, which are located at its corners (Figure 6.14).
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Fig.6.15. Chassis loading mode: a) — applying loads along the chassis; b) - applying loads at an
angle of 60° to the longitudinal axis.
6.3.2 Simulation of the chassis made of S355ML material with the load applied at a 60° angle to
the longitudinal axis of the chassis.

Name Type Minimal value Maximal value
Tensions von Mises tensions 0.000N/mm*2 (MPa) 274.545N/mm*2 (MPa)
Nod: 292859 Nod: 348380

wvon Mises (N/mm”2 (MPa))
274,545
l 247.090
. 219636
. 192181
_ 164727
137.272
100818
L 82363
54.909
27435
0.000

— Yield strength: 345,000

Sasiu-03SA.01-60-Stress-Stres1

Fig.6.24. Distribution of von Mises stresses for the S355ML material with the load applied at a 60°
angle to the longitudinal axis of the chassis.
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Name Type Minimal value Maximal value
Tensiune echivalenta ESTRN 0.000 0.000

Element: 145348 Element: 171834

URES (mm)
0598
l 0538
. 0478

_ 0418

. 0359
0.299

0.239

L 0179
0120

0.060

0.000

\ oardimgite System2

¥

A

Fig.6.25. Distribution of displacements for the S355ML material with the load applied at a 60° angle
to the longitudinal axis of the chassis

Nume Tip Valoare minima Valoare maxima
Tensiune echivalenta ESTRN 0.000 0.000
Element: 145348 Element: 171834

ESTRN
0.000
l 0.000
- 0.000
- 0.000
. 0.000
0.000
1 0.000

. 0.000

0.000
0.000
0.000

oardimgite System?2

¥

s,

Fig.6.26. Distribution of equivalent stresses for the S355ML material with the load applied at a 60°
angle to the longitudinal axis of the chassis.
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Name Type Minimal value Maximal value
Safety factor Automated 1.257e+00 1.464e+05
Nod: 348380 Nod: 350933
Model name: Sasiu-0354.01
Study name: 60(-Default-)
Plot type: Factor of Safety Factor of Safety1
Criterion : Automatic
Factor of safety distribution: Min FOS = 1.3
FOS
1.464e +05
1.318e+05
L 1.172e+05
_ 1.025e+05
_ 8.786e+04
7.322e+04
_ 5.858e+04
. 4393e+04
_ 2.920e+04
I 1.465e +04
1.257e+00
3 oardimate System2
Z

Fig.6.27. The distribution of the safety factor for S355ML material with the load applied at an angle

of 60° to the longitudinal axis of the chassis.

6.4 Conclusions:

Modeling the thermal field during welding provides the opportunity to reduce the design times for
welded structures. At the same time, it offers information regarding the temperature distribution during
the welding process, as well as the ability to measure important parameters, such as the cooling time tgss.

The validation of the simulation model used in this doctoral thesis was carried out by comparing
the temperature distribution curve during welding, obtained with the help of contact thermocouples, with
that obtained through simulation, in order to determine the tss value. The values indicate a significant
similarity in the temperature distribution and, implicitly, in the tg/s values. It can be observed that the tg/s
values obtained from the simulation are tg;s-1 = 7.57 s and tg;5-2 = 7.58 s, with a measurement error of
5.25% and 5.37%, respectively.

From the comparative analysis of the results obtained through FEM, the following information
regarding the stresses to which the welded structure is subjected during operation can be highlighted:

Following the redesign of the chassis structure by replacing the S355ML steel with
S890QL and using components with smaller thickness, the mass of the assembly is
reduced by 31.23%;

The reduction in the mass of the chassis allows for the use of a welding machine with
a heavier welding head, but with superior functions in terms of technological
parameters;

In the case of using S355ML material for manufacturing the chassis, the maximum
stresses during the operation of the installation approach the yield strength of the
material, representing a risk of failure in the event of disturbing factors that increase
the stresses accidentally;
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- In the case of using S890QL steel, the stresses during operation reach up to 30% of the
yield strength, which offers the possibility of using the installation under higher
stresses and/or further reducing the thickness of the components;

- The safety factor increases when using S890QL steel to values over 2.991, which
allows for additional loading of the welding installation without the risk of failure
during operation;

- The deformations caused by the stresses to which the chassis is subjected reach a
maximum of 0.946 mm, relatively low values that do not pose a risk to the operation
of the welding installation.

Chapter 7. Final conclusions, original contributions, and future
research directions

7.1 Conclusions from the theoretical research

From the theoretical analysis of the current state regarding the use of high-strength steels and
their weldability, the following important conclusions were drawn:

- The development of high-strength steels (HSS) began in the mid-20th century, with
the appearance of normalized steels with a tensile strength of 400...500 MPa
(S355N/NL, S460NL/ML), reaching current values of 1400 MPa for ultra-high-
strength steels (S1300Q - see § 1.2) or 1700...2000 MPa for advanced high-strength
steels (MS 1250/1500);

- High-strength steels are used for their high mechanical properties, corrosion
resistance, as well as for their fracture energy values at low temperatures, thus
ensuring a significant reduction in the structural mass and their use in different
environmental conditions (see § 1.3) ;

- With the development of this category of steels, they have found applications in
various industrial fields: automotive (structural components), railway transport
(transport tanks, infrastructure), offshore drilling platforms, shipbuilding, energy
(wind turbines, transmission towers, and other energy-related structures),
construction and infrastructure (buildings, bridges), and heavy equipment
manufacturing (lifting equipment, excavators, bulldozers, and other excavation
equipment) (see § 1.1) ;

- The weldability of high-strength steels is conditioned by the carbon content, as well
as by the alloying elements, with equivalent carbon being a general criterion for
analyzing the weldability of these materials (see § 2.2.1) ;

- The main issues regarding the weldability of high-strength steels are related to the
risk of cold cracking (due to the formation of hard and brittle structures, the presence
of internal stresses, and diffusible hydrogen) and the loss of toughness properties,
manifested by a decrease in fracture energy under dynamic loading and an increase
in the ductile-to-brittle transition temperature (caused by grain growth) (see § 2.1.3);

- For proper welding of high-strength steels, it is recommended to perform preheating
(to avoid cold cracking) and to weld with stringer beads (to avoid grain growth) (see
§2.2.2);

- For welding joints in high-strength steels, most conventional fusion welding
processes can be used, with special attention given to processes where heat dissipation
is rapid (EBW and LASER), as there is a risk of hard and brittle structures forming
and an excessive increase in mechanical properties in the HAZ and the welded seam
(see § 2.3).
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7.2. Conclusions from the theoretical research

Based on the experimental research conducted within the scope of this doctoral thesis, the following
conclusions can be drawn:

- High-strength steels can be successfully used for welding various welded structures in
the automotive and railway industries and can effectively replace currently used steels,
with the aim of enabling the use of higher load-bearing capacities during operation and
reducing the mass of the welded structure.

- Based on the welding technologies developed within the experimental program and the
obtained results, a decision can be made to apply these technologies when using high-
strength steels for welding structures.

- In the case of welded structures, based on the research results obtained in the thesis as
well as the techno-economic analysis, a decision can be made to replace the old base
materials with high-strength steels.

- Non-destructive testing (VT, PT, and UT) performed on welded samples did not reveal
defects that would exclude the samples from the experimental set.

- Considering the importance of the cooling time tgs, for the practical verification of the
calculated value, the experimental research demonstrated the possibility of measuring
this value using contact thermocouples and infrared thermography.

- The hardness values of the welded samples did not exceed the maximum value allowed
by the current standards, at which the risk of cold cracking is avoided, being minimal.
The highest hardness value was 391 HV0.2, obtained for sample P5, which was welded
with a preheating temperature of Ty = 100°C. In certain areas of the weld and the HAZ,
a variation of hardness values from 272 to 291 HVO0.2 can be observed. The lower
values are caused by grain growth due to overheating. Considering the issues
encountered when welding high-strength steels, it is recommended to pay particular
attention to selecting the preheating temperature-linear energy combination. Too low
values may lead to over-tempering of the weld metal and HAZ, risking the formation
of carbide precipitates, which increases hardness and the risk of cold cracking. Using
high values can lead to overheating with a grain growth effect and a reduction in
mechanical properties

- For the majority of welded samples with a preheating temperature of T,r = 100°C, the
tensile strength values were below the minimum guaranteed limit - Rm min = 940
N/mm?, except for sample P11, where the R value was Rm = 951 N/mm2.

- For the samples with a preheating temperature of Tpr = 100°C, the yield strength values
(Rpo.2) were below or close to the minimum guaranteed limit, except for sample P11.

- The obtained values of the fracture energy from the shock bending test were above the
minimum required by the current standards for S890QL material.

- Metallographic analysis performed in the areas of interest of the welded samples (base
material, heat-affected zone, and weld bead) revealed that the fusion line between the
base material and the weld is continuous, with no visible imperfections. The weld
microstructure consistently displays fine dendritic formations aligned along the
thermal flow direction. In all samples, the HAZ exhibits coarse martensite grains,
associated with high temperatures and rapid cooling. In certain samples, an increase in
grain size was observed in the HAZ, typical for regions exposed to high temperatures
followed by cooling. This increase is more pronounced in the over-heating areas.

- In the thermal field modeling for welding, the obtained values indicate a high similarity
in the temperature distribution and, consequently, in the tgs values. It is observed that
the tgs values from the simulation are tgs-1 = 7.57 s and tgs-2 = 7.58 s, with a
measurement error of 5.25% and 5.37%, respectively.
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From the comparative analysis of the results obtained using FEM, it appears that when
using S355ML material for chassis manufacturing, the maximum stresses during the
operation of the installation approach the material’s yield strength limit, which
represents a risk of failure if perturbing factors increase the loading conditions. When
using S890QL steel, the stresses during the operation of the installation reach up to
30% of the yield strength, providing the potential for higher loading conditions and/or
further reduction in component thickness. The safety factor increases when using
S890QL steel to over 2.991, allowing for additional loading of the welding installation
without the risk of failure during operation. The deformations caused by the stresses to
which the chassis is subjected are a maximum of 0.946 mm, which are relatively low
and do not pose a risk to the welding installation’s operation.

7.3.Personal contributions

In light of the proposed objectives and the results of the theoretical and experimental research
carried out during the development of this doctoral thesis, the personal contributions can be summarized

as follows:

7.3.1. Theoretical contributions:

Conducting a study on the current state of high-strength steels used in the
manufacturing of welded structures, presenting their classification, evolution, and
specific characteristics (see § 1).

Carrying out an extensive study on the weldability of high-strength steels and
presenting the main issues encountered with these steels (see § 2).

7.3.2. Experimental contributions:

Development and implementation of the experimental program, including the
realization of the 12 welded samples made of S890QL steel, using the robotized
GMAW welding process (see § 3);

Development of welding technologies, taking into account the recommendations of the
standards in force, as well as the recommendations of manufacturers;

Non-destructive examination of the resulting welded specimens by qualified operators
(visual examination, liquid penetrant examination, ultrasonic examination);

Carrying out mechanical tests in certified laboratories to determine the mechanical
characteristics of each individual welded specimen (tensile test, micro-hardness
determination, impact test);

Performing microscopic and macroscopic examinations of the welded joints;

- tg/s measurement and thermal field analysis using contact thermocouples and infrared
thermography;

Measurement of tg/s paramaeter and thermal field analysis using contact thermocouples
and infrared thermography/

Thermal field analysis using contact thermocouples and infrared thermography;
Conduct experimental research on CFD-MEF modeling of high strength steels;
Development of an experimental 3D model of the chassis to estimate stresses and
strains during welding;

Realization of an experimental stand for testing the chassis assembly fabricated by
welding of S890QL steel fabricated parts;

Realization of the welding technology approval reports for 2 welding technologies:
first short-arc transfer welding, for sheet thickness less than 8 mm, second spray-arc
transfer welding, for sheet thickness more than 12 mm.
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Development and execution of the experimental program, which included the
fabrication of 12 welded samples made from S890QL steel using the robotic GMAW
welding process (see § 3).

Development of welding technologies, considering both the recommendations of
current standards and those of manufacturers.

Nondestructive examination of the welded samples with the assistance of qualified
operators (visual inspection, penetrant testing, ultrasonic testing).

Conducting mechanical tests in certified laboratories to determine the mechanical
characteristics of each welded sample (tensile testing, microhardness determination,
shock bending testing).

Performing microscopic and macroscopic examinations of the welded joints.
Measuring the tgs parameter and analyzing the thermal field using contact
thermocouples and infrared thermography.

Conducting experimental research on CFD-FEM modeling for high-strength steels.
Creating a 3D experimental model of the chassis for stress and deformation estimation
during welding.

Designing an experimental setup for testing a welded chassis assembly made from
S890QL steel components.

Preparing approval reports for welding technologies for two welding processes: short-
arc transfer for plates with thicknesses under 8 mm and spray-arc transfer for plates
thicker than 12 mm.

7.4 Future research directions

The theoretical and experimental results obtained through the scientific research program
presented in detail in this doctoral thesis open the opportunity for further research in the following

directions:

Development of a prototype welding installation chassis using the new S890QL steel
and approved welding technologies.

Redesign of the chassis to reduce the thickness of the components and adapt the
dimensional characteristics to the new operating conditions.

Publication of unpublished results in scientific events, international conferences, and
specialized journals.
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